Based on electromagnetically induced transparency (EIT), we investigate an all-optical grating structure to realize polarization-dependent multiple beam splitting in the Raman-Nath limit. To optimize the grating performance, higher excited state [e.g., nS 1/2 (n ≥ 6)] of ultracold 87Rb atoms is employed to construct a five-level Ξ-Λ system sharing one common populated ground state. A principal advantage of our proposed scheme is that the σ ± components of a linearly polarized weak probe field can be decoupled and thus be independently diffracted with high efficiency in both one and two dimensions by exploiting different quasi-standing waves as the two strong coupling fields in the Ξ and Λ configurations. Such an all-optical polarization-sensitive operation could greatly enhance the tunability and capacity of all-optical multiplexing, interconnecting, and networking in free space for both classical and quantum applications.
CITATION STYLE
Zhao, L. (2018). Electromagnetically induced polarization grating. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-21494-8
Mendeley helps you to discover research relevant for your work.