Abstract
A chemolithoautotrophic arsenite-oxidizing bacterium, designated strain KGO-5, was isolated from arsenic-contaminated industrial soil. Strain KGO-5 was phylogenetically closely related with Sinorhizobium meliloti with 16S rRNA gene similarity of more than 99%, and oxidized 5 mM arsenite under autotrophic condition within 60 h with a doubling time of 3.0 h. Additions of 0.01-0.1% yeast extract enhanced the growth significantly, and the strain still oxidized arsenite efficiently with much lower doubling times of approximately 1.0 h. Arsenite-oxidizing capacities (11.2-54.1 μmol h-1 mg dry cells-1) as well as arsenite oxidase (Aio) activities (1.76-10.0 mU mg protein-1) were found in the cells grown with arsenite, but neither could be detected in the cells grown without arsenite. Strain KGO-5 possessed putative aioA gene, which is closely related with AioA of Ensifer adhaerens. These results suggest that strain KGO-5 is a facultative chemolithoautotrophic arsenite oxidizer, and its Aio is induced by arsenic.
Author supplied keywords
Cite
CITATION STYLE
Dong, D., Ohtsuka, T., Dong, D. T., & Amachi, S. (2014). Arsenite oxidation by a facultative chemolithoautotrophic Sinorhizobium sp. KGO-5 isolated from arsenic-contaminated soil. Bioscience, Biotechnology and Biochemistry, 78(11), 1963–1970. https://doi.org/10.1080/09168451.2014.940276
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.