Flooding tolerance of forage legumes

137Citations
Citations of this article
129Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We review waterlogging and submergence tolerances of forage (pasture) legumes. Growth reductions from waterlogging in perennial species ranged from >50% for Medicago sativa and Trifolium pratense to <25% for Lotus corniculatus, L. tenuis, and T. fragiferum. For annual species, waterlogging reduced Medicago truncatula by ∼50%, whereas Melilotus siculus and T. michelianum were not reduced. Tolerant species have higher root porosity (gas-flled volume in tissues) owing to aerenchyma formation. Plant dry mass (waterlogged relative to control) had a positive (hyperbolic) relationship to root porosity across eight species. Metabolism in hypoxic roots was influenced by internal aeration. Sugars accumulate in M. sativa due to growth inhibition from limited respiration and low energy in roots of low porosity (i.e. 4.5%). In contrast, L. corniculatus, with higher root porosity (i.e. 17.2%) and O2 supply allowing respiration, maintained growth better and sugars did not accumulate. Tolerant legumes form nodules, and internal O2 diffusion along roots can sustain metabolism, including N2 fxation, in submerged nodules. Shoot physiology depends on species tolerance. In M. sativa, photosynthesis soon declines and in the longer term (>10 d) leaves suffer chlorophyll degradation, damage, and N, P, and K defciencies. In tolerant L. corniculatus and L. tenuis, photosynthesis is maintained longer, shoot N is less affected, and shoot P can even increase during waterlogging. Species also differ in tolerance of partial and complete shoot submergence. Gaps in knowledge include anoxia tolerance of roots, N2 fxation during feld waterlogging, and identifcation of traits conferring the ability to recover after water subsides.

Cite

CITATION STYLE

APA

Striker, G. G., & Colmer, T. D. (2017, April 1). Flooding tolerance of forage legumes. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/erw239

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free