Effects of three neuromuscular electrical stimulation methods on muscle force production and neuromuscular fatigue

5Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study compared the acute responses of three neuromuscular electrical stimulation (NMES) methods on muscle torque-time integral (TTI) and neuromuscular fatigue. Narrow-pulse (0.2 ms; NP), wide-pulse (1 ms; WP), and tendon vibration superimposed onto wide-pulse (WP + VIB)-NMES conditions were applied to sixteen healthy individuals (n = 16) in three separate sessions in a randomized order. Stimulation intensity was set to elicit 20% of maximal voluntary contraction (MVC); the stimulus pattern comprised four sets of 20 repetitions (5 s On and 5 s Off) with a one-minute inter-set interval. TTI was measured for each NMES condition and MVC, voluntary activation (VA), peak twitch torque (Peaktwitch), and peak soleus (EMGSOL), medial (EMGMG), and lateral gastrocnemius (EMGLG) electromyography were measured before and immediately after each NMES condition. TTI was higher during WP + VIB (19.63 ± 6.34 MVC.s, mean difference = 3.66, p < 0.001, Cohen's d = 0.501) than during WP (15.97 ± 4.79 MVC.s) condition. TTI was higher during WP + VIB (mean difference = 3.79, p < 0.001, Cohen's d = 0.626) than during NP (15.84 ± 3.73 MVC.s) condition. MVC and Peaktwitch forces decreased (p ≤ 0.001) immediately after all conditions. No changes were observed for VA (p = 0.365). EMGSOL amplitude reduced (p = 0.040) only after NP, yet EMGLG and EMGMG amplitudes decreased immediately after all conditions (p = 0.003 and p = 0.013, respectively). WP + VIB produced a higher TTI than WP and NP-NMES, with similar amounts of neuromuscular fatigue across protocols. All NMES protocols induced similar amounts of peripheral fatigue and reduced EMG amplitudes.

Cite

CITATION STYLE

APA

Alahmari, S. K., Shield, A. J., & Trajano, G. S. (2022). Effects of three neuromuscular electrical stimulation methods on muscle force production and neuromuscular fatigue. Scandinavian Journal of Medicine and Science in Sports, 32(10), 1456–1463. https://doi.org/10.1111/sms.14210

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free