Image classification of marine-terminating outlet glaciers in Greenland using deep learning methods

22Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A wealth of research has focused on elucidating the key controls on mass loss from the Greenland and Antarctic ice sheets in response to climate forcing, specifically in relation to the drivers of marine-terminating outlet glacier change. The manual methods traditionally used to monitor change in satellite imagery of marine-terminating outlet glaciers are time-consuming and can be subjective, especially where mélange exists at the terminus. Recent advances in deep learning applied to image processing have created a new frontier in the field of automated delineation of glacier calving fronts. However, there remains a paucity of research on the use of deep learning for pixel-level semantic image classification of outlet glacier environments. Here, we apply and test a two-phase deep learning approach based on a well-established convolutional neural network (CNN) for automated classification of Sentinel-2 satellite imagery. The novel workflow, termed CNN-Supervised Classification (CSC) is adapted to produce multi-class outputs for unseen test imagery of glacial environments containing marine-terminating outlet glaciers in Greenland. Different CNN input parameters and training techniques are tested, with overall F1 scores for resulting classifications reaching up to 94% for in-sample test data (Helheim Glacier) and 96% for out-of-sample test data (Jakobshavn Isbrae and Store Glacier), establishing a state of the art in classification of marine-terminating glaciers in Greenland. Predicted calving fronts derived using optimal CSC input parameters have a mean deviation of 56.17m (5.6px) and median deviation of 24.7m (2.5px) from manually digitised fronts. This demonstrates the transferability and robustness of the deep learning workflow despite complex and seasonally variable imagery. Future research could focus on the integration of deep learning classification workflows with free cloud-based platforms, to efficiently classify imagery and produce datasets for a range of glacial applications without the need for substantial prior experience in coding or deep learning.

Cite

CITATION STYLE

APA

Marochov, M., Stokes, C. R., & Carbonneau, P. E. (2021). Image classification of marine-terminating outlet glaciers in Greenland using deep learning methods. Cryosphere, 15(11), 5041–5059. https://doi.org/10.5194/tc-15-5041-2021

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free