A KSHV microRNA Directly Targets G Protein-Coupled Receptor Kinase 2 to Promote the Migration and Invasion of Endothelial Cells by Inducing CXCR2 and Activating AKT Signaling

79Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

Kaposi's sarcoma (KS) is a highly disseminated angiogenic tumor of endothelial cells linked to infection by Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV encodes more than two dozens of miRNAs but their roles in KSHV-induced tumor dissemination and metastasis remain unknown. Here, we found that ectopic expression of miR-K12-3 (miR-K3) promoted endothelial cell migration and invasion. Bioinformatics and luciferase reporter analyses showed that miR-K3 directly targeted G protein-coupled receptor (GPCR) kinase 2 (GRK2, official gene symbol ADRBK1). Importantly, overexpression of GRK2 reversed miR-K3 induction of cell migration and invasion. Furthermore, the chemokine receptor CXCR2, which was negatively regulated by GRK2, was upregulated in miR-K3-transduced endothelial cells. Knock down of CXCR2 abolished miR-K3-induced cell migration and invasion. Moreover, miR-K3 downregulation of GRK2 relieved its direct inhibitory effect on AKT. Both CXCR2 induction and the release of AKT from GRK2 were required for miR-K3 maximum activation of AKT and induction of cell migration and invasion. Finally, deletion of miR-K3 from the KSHV genome abrogated its effect on the GRK2/CXCR2/AKT pathway and KSHV-induced migration and invasion. Our data provide the first-line evidence that, by repressing GRK2, miR-K3 facilitates cell migration and invasion via activation of CXCR2/AKT signaling, which likely contribute to the dissemination of KSHV-induced tumors.

Cite

CITATION STYLE

APA

Hu, M., Wang, C., Li, W., Lu, W., Bai, Z., Qin, D., … Lu, C. (2015). A KSHV microRNA Directly Targets G Protein-Coupled Receptor Kinase 2 to Promote the Migration and Invasion of Endothelial Cells by Inducing CXCR2 and Activating AKT Signaling. PLoS Pathogens, 11(9). https://doi.org/10.1371/journal.ppat.1005171

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free