This study investigated the use of a biomass ash produced by a fuel combination made with wood, corn stover, and corn cob as cement replacement for the production of mortar. Biomasses are now widely accepted as a substitute for conventional fuels and are becoming essential for cost-effective production of energy. This study aimed to provide an opportunity for the annual agricultural corn-crop residue, corn stover and cob, which is increasingly being used as fuel for its valuable energy content. Measurements of workability, compressive strength, and leachate properties (pH, salinity, heavy metals and calcium ion release) of mortar specimen, at different cement substitution levels and ages, were evaluated. The results obtained reveal definitive possibilities for such mixed biomass ash to be used in cement-based materials, such as mortars. Moreover, a multiple regression analysis has been reported between the mass of calcium ions leached and the mixture composition with the compressive strength. Data show that further confirmation, on a longer span of time and of other types of mechanical properties and environmental tests, would be necessary to fully implement the use of such biomass ashes in various types of cement-based construction materials, in order to divert them from landfill disposal.
CITATION STYLE
Fava, G., Naik, T. R., & Pierpaoli, M. (2018). Compressive strength and leaching behavior of mortars with biomass ash. Recycling, 3(3). https://doi.org/10.3390/recycling3030046
Mendeley helps you to discover research relevant for your work.