Abstract
Imbalances in mitochondrial and peroxisomal dynamics are associated with a spectrum of human neurological disorders. Mitochondrial and peroxisomal fission both involve dynaminrelated protein 1 (DRP1) oligomerisation and membrane constriction, although the precise biophysicalmechanisms by which distinct DRP1 variants affect the assembly and activity of different DRP1 domains remains largely unexplored. We analysed four unreported de novo heterozygous variants in the dynamin- 1-like gene DNM1L, affecting different highly conserved DRP1 domains, leading to developmental delay, seizures, hypotonia, and/or rare cardiac complications in infancy. Single-nucleotide DRP1 stalk domain variants were found to correlate with more severe clinical phenotypes, with in vitro recombinant human DRP1 mutants demonstrating greater impairments in protein oligomerisation, DRP1-peroxisomal recruitment, and both mitochondrial and peroxisomal hyperfusion compared to GTPase or GTPase-effector domain variants. Importantly, we identified a novel mechanism of pathogenesis, where a p.Arg710Gly variant uncouples DRP1 assembly from assembly-stimulated GTP hydrolysis, providing mechanistic insight into how assembly-state information is transmitted to the GTPase domain. Together, these data reveal that discrete, pathological DNM1L variants impair mitochondrial network maintenance by divergent mechanisms.
Cite
CITATION STYLE
Nolden, K. A., Egner, J. M., Collier, J. J., Russell, O. M., Alston, C. L., Harwig, M. C., … Oláhová, M. (2022). Novel DNM1L variants impair mitochondrial dynamics through divergent mechanisms. Life Science Alliance, 5(12). https://doi.org/10.26508/lsa.202101284
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.