Metric Learning with Equidistant and Equidistributed Triplet-based Loss for Product Image Search

12Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Product image search in E-commerce systems is a challenging task, because of a huge number of product classes, low intra-class similarity and high inter-class similarity. Deep metric learning, based on paired distances independent of the number of classes, aims to minimize intra-class variances and inter-class similarity in feature embedding space. Most existing approaches strictly restrict the distance between samples with fixed values to distinguish different classes of samples. However, the distance of paired samples has various magnitudes during different training stages. Therefore, it is difficult to directly restrict absolute distances with fixed values. In this paper, we propose a novel Equidistant and Equidistributed Triplet-based (EET) loss function to adjust the distance between samples with relative distance constraints. By optimizing the loss function, the algorithm progressively maximizes intra-class similarity and inter-class variances. Specifically, 1) the equidistant loss pulls the matched samples closer by adaptively constraining two samples of the same class to be equally distant from another one of a different class in each triplet, 2) the equidistributed loss pushes the mismatched samples farther away by guiding different classes to be uniformly distributed while keeping intra-class structure compact in embedding space. Extensive experimental results on product search benchmarks verify the improved performance of our method. We also achieve improvements on other retrieval datasets, which show superior generalization capacity of our method in image search.

Cite

CITATION STYLE

APA

Xu, F., Zhang, W., Cheng, Y., & Chu, W. (2020). Metric Learning with Equidistant and Equidistributed Triplet-based Loss for Product Image Search. In The Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020 (pp. 57–65). Association for Computing Machinery, Inc. https://doi.org/10.1145/3366423.3380094

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free