Colony-stimulating factor-induced monocyte survival and differentiation into macrophages in serum-free cultures.

  • Becker S
  • Warren M
  • Haskill S
240Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

The role of mononuclear phagocyte-specific colony-stimulating factor (CSF-1) in human monocyte to macrophage differentiation was investigated. The addition of 1000 U/ml of CSF-1 to serum-free monocyte cultures resulted in monocyte survival comparable to that in cultures containing 5% AB serum, whereas cells in serum- and CSF-1-free medium lost their viability in 3 to 5 days. The requirement for CSF-1 coincided with the time (40 to 64 hr of culture) when the major changes in morphology and biochemical function took place in monocytes undergoing differentiation into macrophages. If CSF-1 was removed from the cultures before this time, death of the monocytes resulted. In cultures containing CSF-1, as in serum containing cultures, the lysosomal enzyme acid phosphatase was enhanced 10- to 20-fold by day 4 to 5. Superoxide production in response to phorbol myristic acetate was maintained in CSF-1 cultured monocytes, but declined with time in monocytes cultured in serum. The expression of monocyte-macrophage antigens p150.95 (LeuM5), OKM1, LeuM3, Fc receptors (32.2), and HLA-DR had increased in CSF-1 containing cultures at day 4. When antigen expression was analyzed at day 2 to 3, when cell size and 90 degrees scatter characteristics were still identical to control serum-free cultures, only p150.95, HLA-DR and FcR expression were enhanced by CSF-1. Low amounts of lipopolysaccharide (0.1 ng/ml) were found to enhance monocyte survival in the absence of added CSF-1. Lipopolysaccharide-containing cultures were found to produce CSF-1 (up to 450 U/ml, as detected by radioimmunoassay). Lipopolysaccharide (1 microgram/ml), however, did not induce enhanced expression of the maturation-related antigens. Based on these observations we conclude that CSF-1 is enhancing human monocyte survival and is involved in the events leading to the differentiation of monocytes into macrophages.

Cite

CITATION STYLE

APA

Becker, S., Warren, M. K., & Haskill, S. (1987). Colony-stimulating factor-induced monocyte survival and differentiation into macrophages in serum-free cultures. The Journal of Immunology, 139(11), 3703–3709. https://doi.org/10.4049/jimmunol.139.11.3703

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free