When the state of the art is ahead of the state of understanding: Unintuitive properties of deep neural networks

1Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Deep learning is an undeniably hot topic, not only within both academia and industry, but also among society and the media. The reasons for the advent of its popularity are manifold: unprecedented availability of data and computing power, some innovative methodologies, minor but significant technical tricks, etc. However, interestingly, the current success and practice of deep learning seems to be uncorrelated with its theoretical, more formal understanding. And with that, deep learning’s state-of-the-art presents a number of unintuitive properties or situations. In this note, I highlight some of these unintuitive properties, trying to show relevant recent work, and expose the need to get insight into them, either by formal or more empirical means.

Cite

CITATION STYLE

APA

Serrà, J. (2019). When the state of the art is ahead of the state of understanding: Unintuitive properties of deep neural networks. Metode, 2019(9), 127–133. https://doi.org/10.7203/metode.9.11035

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free