Abstract
Neurons are highly polarized cells forming an intricate network of dendrites and axons. They are shaped by the dynamic reorganization of cytoskeleton components and cellular organelles. Axon branching allows the formation of new paths and increases circuit complexity. However, our understanding of branch formation is sparse due to the lack of direct in-depth observations. Using in situ cellular cryo-electron tomography on primary mouse neurons, we directly visualized the remodeling of organelles and cytoskeleton structures at axon branches. Strikingly, branched areas functioned as hotspots concentrating organelles to support dynamic activities. Unaligned actin filaments assembled at the base of premature branches accompanied by filopodia-like protrusions. Microtubules and ER comigrated into preformed branches to support outgrowth together with accumulating compact, ∼500-nm mitochondria and locally clustered ribosomes. We obtained a roadmap of events supporting the hypothesis of local protein synthesis selectively taking place at axon branches, allowing them to serve as unique control hubs for axon development and downstream neural network formation.
Cite
CITATION STYLE
Nedozralova, H., Basnet, N., Ibiricu, I., Bodakuntla, S., Biertümpfel, C., & Mizuno, N. (2022). In situ cryo-electron tomography reveals local cellular machineries for axon branch development. Journal of Cell Biology, 221(4). https://doi.org/10.1083/jcb.202106086
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.