Plasmon-based photopolymerization: Near-field probing, advanced photonic nanostructures and nanophotochemistry

26Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Hybrid nanomaterials are targeted by a rapidly growing group of nanooptics researchers, due to the promise of optical behavior that is difficult or even impossible to create with nanostructures of homogeneous composition. Examples of important areas of interest include coherent coupling, Fano resonances, optical gain, solar energy conversion, photocatalysis, and nonlinear optical interactions. In addition to the coupling interactions, the strong dependence of optical resonances and damping on the size, shape, and composition of the building blocks provides promise that the coupling interactions of hybrid nanomaterials can be controlled and manipulated for a desired outcome. Great challenges remain in reliably synthesizing and characterizing hybrid nanomaterials for nanooptics. In this review, we describe the synthesis, characterization, and applications of hybrid nanomaterials created through plasmon-induced photopolymerization. The work is placed within the broader context of hybrid nanomaterials involving plasmonic metal nanoparticles and molecular materials placed within the length scale of the evanescent field from the metal surface. We specifically review three important applications of free radical photopolymerization to create hybrid nanoparticles: local field probing, photoinduced synthesis of advanced hybrid nanoparticles, and nanophotochemistry.

Cite

CITATION STYLE

APA

Zhou, X., Soppera, O., Plain, J., Jradi, S., Wei Sun, X., Volkan Demir, H., … Bachelot, R. (2014, November 1). Plasmon-based photopolymerization: Near-field probing, advanced photonic nanostructures and nanophotochemistry. Journal of Optics (United Kingdom). IOP Publishing Ltd. https://doi.org/10.1088/2040-8978/16/11/114002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free