Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up

26Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

Abstract

The importance of nonrigid geological features (such as orogens) inside tectonic plates on Earth’s dynamic evolution lacks thorough investigation. In particular, the influence of continent-spanning orogens on (super)continental break-up remains unclear. Here we reconstruct global orogens and model their controlling effects on Pangea break-up. We show that while loci of Pangea break-up are linked to mantle plumes, development of continental rifts is guided by orogens. Rifting at Central Atlantic is driven by the modelled plume responsible for the Central Atlantic Magmatic Province (CAMP) within Pangea-forming orogens. South Atlantic rifting is controlled by necking between Pangea- and Gondwana-forming orogens with the assistance of plume-induced lithospheric weakening. Without CAMP-induced weakening, South Atlantic rifting fails between the West African and Amazonian cratons, but occurs between the West African and Saharan cratons instead. Our modeling on Pangea break-up is able to recreate present-day continental geometry through the combined effect of orogens and plume center-locations.

Cite

CITATION STYLE

APA

Dang, Z., Zhang, N., Li, Z. X., Huang, C., Spencer, C. J., & Liu, Y. (2020). Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. Communications Earth and Environment, 1(1). https://doi.org/10.1038/s43247-020-00052-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free