Kinetics of iron removal from quartz under the ultrasound-assisted leaching was explored in this paper, and the effects of temperature, leaching time, stirring speed and ultrasonic input power on iron removal were studied. The results revealed that the reaction kinetics followed the shrinking core model and the product layer internal diffusion was the rate-determining step in the ultrasound-assisted leaching process. The activation energy of the ultrasonic-assisted leaching reaction was 27.72 kJ/mol, which was 7.28 kJ/mol higher than that of the regular method. Moreover, the kinetic equation and mathematical model of iron removal from quartz were established. Compared with the regular leaching, only 40 min were required for the ultrasound-assisted leaching process to achieve an iron removal rate of up to 74%. Under the optimal parameters, SiO2 content of concentrate increased from 99.5828% to 99.9047%, and Fe2O3 content reduced from 0.0857% to 0.0223%. Additionally, it was found that the iron removal rate increased with increasing temperature, stirring speed or ultrasonic power.
CITATION STYLE
Yang, C. Q., & Li, S. Q. (2020). Kinetics of iron removal from quartz under ultrasound-assisted leaching. High Temperature Materials and Processes, 39(1), 395–404. https://doi.org/10.1515/htmp-2020-0081
Mendeley helps you to discover research relevant for your work.