The reionization of intergalactic hydrogen has received intense theoretical scrutiny over the past two decades. Here, we approach the process formally as a percolation process and phase transition. Using semi-numeric simulations, we demonstrate that an infinitely large ionized region abruptly appears at an ionized fraction of xi ≈ 0.1 and quickly grows to encompass most of the ionized gas: By xi ~ 0.3, nearly 90 per cent of the ionized material is part of this region. Throughout most of reionization, nearly all of the intergalactic medium is divided into just two regions, one ionized and one neutral, and both infinite in extent. We also show that the discrete ionized regions that exist before and near this transition point follow a near-powerlaw distribution in volume, with equal contributions to the total filling factor per logarithmic interval in size up to a sharp cutoff in volume. These qualities are generic to percolation processes, with the detailed behaviour a result of long-range correlations in the underlying density field. These insights will be crucial to understanding the distribution of ionized and neutral gas during reionization and provide precise meaning to the intuitive description of reionization as an 'overlap' process.
CITATION STYLE
Furlanetto, S. R., & Oh, S. P. (2016). Reionization through the lens of percolation theory. Monthly Notices of the Royal Astronomical Society, 457(2), 1813–1827. https://doi.org/10.1093/mnras/stw104
Mendeley helps you to discover research relevant for your work.