Boosting k-means clustering with symbiotic organisms search for automatic clustering problems

33Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

Kmeans clustering algorithm is an iterative unsupervised learning algorithm that tries to partition the given dataset into k pre-defined distinct non-overlapping clusters where each data point belongs to only one group. However, its performance is affected by its sensitivity to the initial cluster centroids with the possibility of convergence into local optimum and specification of cluster number as the input parameter. Recently, the hybridization of metaheuristics algorithms with the K-Means algorithm has been explored to address these problems and effectively improve the algorithm’s performance. Nonetheless, most metaheuristics algorithms require rigorous parameter tunning to achieve an optimum result. This paper proposes a hybrid clustering method that combines the well-known symbiotic organisms search algorithm with K-Means using the SOS as a global search metaheuristic for generating the optimum initial cluster centroids for the K-Means. The SOS algorithm is more of a parameter-free metaheuristic with excellent search quality that only requires initialising a single control parameter. The performance of the proposed algorithm is investigated by comparing it with the classical SOS, classical K-means and other existing hybrids clustering algorithms on eleven (11) UCI Machine Learning Repository datasets and one artificial dataset. The results from the extensive computational experimentation show improved performance of the hybrid SOSK-Means for solving automatic clustering compared to the standard K-Means, symbiotic organisms search clustering methods and other hybrid clustering approaches.

Cite

CITATION STYLE

APA

Ikotun, A. M., & Ezugwu, A. E. (2022). Boosting k-means clustering with symbiotic organisms search for automatic clustering problems. PLoS ONE, 17(8 August). https://doi.org/10.1371/journal.pone.0272861

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free