Abstract
This study examined motoneurone properties during fictive locomotion in the adult rat for the first time. Fictive locomotion was induced via electrical stimulation of the mesencephalic locomotor region in decerebrate adult rats under neuromuscular blockade to compare basic and rhythmic motoneurone properties in antidromically identified extensor motoneurones during: (1) quiescence, before and after fictive locomotion; (2) the 'tonic' period immediately preceding locomotor-like activity, whereby the amplitude of peripheral flexor (peroneal) and extensor (tibial) nerves are increased but alternation has not yet occurred; and (3) locomotor-like episodes. Locomotion was identified by alternating flexor-extensor nerve activity, where the motoneurone either produced membrane oscillations consistent with a locomotor drive potential (LDP) or did not display membrane oscillation during alternating nerve activity. Cells producing LDPs were referred to as such, while those that did not were referred to as 'idle' motoneurones. LDP and idle motoneurones during locomotion had hyperpolarized spike threshold (Vth; LDP: 3.8 mV; idle: 5.8 mV), decreased rheobase and an increased discharge rate (LDP: 64%; idle: 41%) during triangular ramp current injection even though the frequency-current slope was reduced by 70% and 55%, respectively. Modulation began in the tonic period immediately preceding locomotion, with a hyperpolarized Vth and reduced rheobase. Spike frequency adaptation did not occur in spiking LDPs or firing generated from sinusoidal current injection, but occurred during a sustained current pulse during locomotion. Input conductance showed no change. Results suggest motoneurone modulation occurs across the pool and is not restricted to motoneurones engaged in locomotion.
Cite
CITATION STYLE
Macdonell, C. W., Power, K. E., Chopek, J. W., Gardiner, K. R., & Gardiner, P. F. (2015). Extensor motoneurone properties are altered immediately before and during fictive locomotion in the adult decerebrate rat. Journal of Physiology, 593(10), 2327–2342. https://doi.org/10.1113/JP270239
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.