A human-centered safe robot reinforcement learning framework with interactive behaviors

1Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Deployment of Reinforcement Learning (RL) algorithms for robotics applications in the real world requires ensuring the safety of the robot and its environment. Safe Robot RL (SRRL) is a crucial step toward achieving human-robot coexistence. In this paper, we envision a human-centered SRRL framework consisting of three stages: safe exploration, safety value alignment, and safe collaboration. We examine the research gaps in these areas and propose to leverage interactive behaviors for SRRL. Interactive behaviors enable bi-directional information transfer between humans and robots, such as conversational robot ChatGPT. We argue that interactive behaviors need further attention from the SRRL community. We discuss four open challenges related to the robustness, efficiency, transparency, and adaptability of SRRL with interactive behaviors.

Cite

CITATION STYLE

APA

Gu, S., Kshirsagar, A., Du, Y., Chen, G., Peters, J., & Knoll, A. (2023). A human-centered safe robot reinforcement learning framework with interactive behaviors. Frontiers in Neurorobotics, 17. https://doi.org/10.3389/fnbot.2023.1280341

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free