Hepatic population derived from human pluripotent stem cells is effectively increased by selective removal of undifferentiated stem cells using YM155

10Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Pluripotent stem cells (PSCs) such as embryonic stem cells and induced pluripotent stem cells are promising target cells for cell regenerative medicine together with recently advanced technology of in-vitro differentiation. However, residual undifferentiated stem cells (USCs) during in-vitro differentiation are considered a potential risk for development of cancer cells and nonspecific lineage cell types. In this study we observed that USCs still exist during hepatic differentiation, consequently resulting in poor quality of the hepatic population and forming teratoma in vivo. Therefore, we hypothesized that effectively removing USCs from in-vitro differentiation could improve the quality of the hepatic population and guarantee safety from risk of teratoma formation. Methods: Human PSCs were differentiated to hepatocytes via four steps. YM155, a known BIRC5 inhibitor, was applied for removing the residual USCs on the hepatic differentiation. After YM155 treatment, hepatocyte development was evaluated by measuring gene expression, immunostaining and hepatic functions at each stage of differentiation, and forming teratomas were confirmed by cell transplantation with or without YM155. Results: The selected concentrations of YM155 removed USCs (NANOG+ and OCT4+) in a dose-dependent manner. As a result, expression of endodermal markers (SOX17, FOXA2 and CXCR4) at stage II of differentiation and hepatic markers (ALB, AFP and HNF4A) at stage III was up-regulated by YM155 treatment as well as the hepatic population (ALB+), and functions (ALB/urea secretion and CYP450 enzyme activity) were enhanced at the final stage of differentiation (stage IV). Furthermore, we demonstrated that NANOG and OCT4 expression remaining until stage III (day 15 of differentiation) completely disappeared when treated with YM155 and teratoma formation was effectively prevented by YM155 pretreatment in the in-vitro study. Conclusions: We suggest that the removal of USCs using YM155 could improve the quantity and quality of induced hepatocytes and eliminate the potential risk of teratoma formation.

Cite

CITATION STYLE

APA

Kang, S. J., Park, Y. I., Hwang, S. R., Yi, H., Tham, N., Ku, H. O., … Kang, H. G. (2017). Hepatic population derived from human pluripotent stem cells is effectively increased by selective removal of undifferentiated stem cells using YM155. Stem Cell Research and Therapy, 8(1). https://doi.org/10.1186/s13287-017-0517-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free