Topic detection and tracking on heterogeneous information

20Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Given the proliferation of social media and the abundance of news feeds, a substantial amount of real-time content is distributed through disparate sources, which makes it increasingly difficult to glean and distill useful information. Although combining heterogeneous sources for topic detection has gained attention from several research communities, most of them fail to consider the interaction among different sources and their intertwined temporal dynamics. To address this concern, we studied the dynamics of topics from heterogeneous sources by exploiting both their individual properties (including temporal features) and their inter-relationships. We first implemented a heterogeneous topic model that enables topic–topic correspondence between the sources by iteratively updating its topic–word distribution. To capture temporal dynamics, the topics are then correlated with a time-dependent function that can characterise its social response and popularity over time. We extensively evaluate the proposed approach and compare to the state-of-the-art techniques on heterogeneous collection. Experimental results demonstrate that our approach can significantly outperform the existing ones.

Cite

CITATION STYLE

APA

Chen, L., Zhang, H., Jose, J. M., Yu, H., Moshfeghi, Y., & Triantafillou, P. (2018). Topic detection and tracking on heterogeneous information. Journal of Intelligent Information Systems, 51(1), 115–137. https://doi.org/10.1007/s10844-017-0487-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free