Abstract
pH-sensitive hydrogels are suitable candidates for oral delivery of therapeutic peptides, proteins, and drugs, due to their ability to respond to environmental pH changes. New pH-sensitive glycopolymers have been developed by free-radical polymerization of methacrylic acid and 6-acryloyl-glucose-1, 2, 3, 4-tetraacetate, using 1, 6-hexandiol diacrylate and 1, 6-hexandiol propoxylate diacrylate as cross-linking agents. The hydrogels were characterized by differential scanning calorimetry and FTIR. Equilibrium swelling studies were carried out in enzyme-free simulated gastric and intestinal fluids (SGF and SIF, respectively). A model drug, olsalazine [3, 3′-azobis (6-hydroxy benzoic acid)] as an azo derivative of 5-aminosalicylic acid, was entrapped in these gels and the in vitro release profiles were established separately in both enzyme-free SGF and SIF. The drug-release profiles indicated that the amount of drug released depended on the degree of swelling. The hydrogels containing polar propoxylate groups were hydrolyzed rather easily. Copyright © Informa Healthcare.
Author supplied keywords
Cite
CITATION STYLE
Mahkam, M. (2007). New pH-sensitive glycopolymers for colon-specific drug delivery. Drug Delivery, 14(3), 147–153. https://doi.org/10.1080/10717540601067745
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.