All small nuclear RNAs (snRNAs) of the [U4/U6.U5] tri-snRNP localize transiently to nucleoli, as visualized by microscopy after injection of fluorescein-labeled transcripts into Xenopus laevis oocyte nuclei. Here, we demonstrate that these RNAs traffic to nucleoli independently of one another, because U4 snRNA deleted in the U6 base-pairing region still localizes to nucleoli. Furthermore, depletion of endogenous U6 snRNA does not affect nucleolar localization of injected U4 or U5. The wild-type U4 transcripts used here are functional: they exhibit normal nucleocytoplasmic traffic, associate with Sm proteins, form the [U4/U6] di-snRNP, and localize to nucleoli and Cajal bodies. The nucleolar localization element (NoLE) of U4 snRNA was mapped by mutagenesis. Neither the 5′-cap nor the 3′-region of U4, which includes the Sm protein binding site, are essential for nucleolar localization. The only region in U4 snRNA required for nucleolar localization is the 5′-proximal stem loop, which contains the binding site for the NHPX/15.5-kD protein. Even mutation of just five nucleotides, essential for binding this protein, impaired U4 nucleolar localization. Intriguingly, the NHPX/15.5-kD protein also binds the nucleolar localization element of box C/D small nucleolar RNAs, suggesting that this protein might mediate nucleolar localization of several small RNAs.
CITATION STYLE
Gerbi, S. A., Borovjagin, A. V., Odreman, F. E., & Lange, T. S. (2003). U4 snRNA nucleolar localization requires the NHPX/15.5-kD protein binding site but not Sm protein or U6 snRNA association. Journal of Cell Biology, 162(5), 821–832. https://doi.org/10.1083/jcb.200301071
Mendeley helps you to discover research relevant for your work.