Abstract
Endodontic treatment is one of the most widely used techniques in present-day odontology owing to the tendency to save teeth whenever possible. In endodontic therapy, the injured pulp of a tooth (located in the interior of the tooth and containing nerves and other vital tissues) is cleaned out and then the space is disinfected and subsequently filled with restorative material. This process is commonly known as root canal treatment. The devitalised tooth resulting from endodontics, has a different stiffness and resistance as compared to the original tooth and is less resistant as a consequence of the loss of tooth structure (Walton & Torabinejad, 2002). The use of intraradicular posts has extended as a technique to restore teeth that have lost a considerable amount of coronal tooth structure. After removing the pulp, the intraradicular post is introduced into the devitalised root. The post helps to support the final restoration and join it to the root (Christensen, 1998). Fig. 1a shows the typical structure of a tooth endodontically restored with a post. The post is inserted into the devitalised root canal, which has previously been obturated at its apical end with a biocompatible polymer called gutta-percha. Cement is used to bond the post to the root canal and a core is placed over the remaining dentine and the post. Finally, an artificial crown is used to achieve an external appearance that is similar to that of the original tooth. Nowadays most of the posts are prefabricated in a range of different materials and designs (Scotti & Ferrari, 2004). However, before prefabricated post became generalised, cast post and cores were used as a single metal alloy unit (Fig. 1b). Cast postcore systems take longer to make and involve an intermediate laboratory stage in which the retention system is created, which makes the whole process more costly. In comparison, prefabricated posts do not need this intermediate stage, which means that the whole restoration process can be performed in a single visit and is obviously easier and cheaper for the patient (Christensen, 1998). Nonetheless, the adaptation of the prefabricated posts to the root canal may be less accurate (Chan et al., 1993). As the endodontically restored tooth is composed of materials that are different to those of natural teeth, it is expected to have a different biomechanical response under oral loads. The deformation of the system under flexural, compressive or tension forces could be different and so its mechanical strength under static or fatigue loads. Ideally, it seems interesting that the biomechanical behaviour of the restored system should preferably resemble that of the original tooth as much as possible in order to avoid failure of the repaired tooth or its
Cite
CITATION STYLE
Perez-Gonzalez, A., Gonzalez-Lluch, C., L., J., J., P., & L., J. (2011). Biomechanical Models of Endodontic Restorations. In Theoretical Biomechanics. InTech. https://doi.org/10.5772/24065
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.