Background: Perfluorocarbon (PFC) vapour in the expired gases during partial liquid ventilation should be prevented from entering the atmosphere and recovered for potential reuse. This study aimed to determine how much PFC liquid could be recovered using a conventional humidified neonatal ventilator with chilled condensers in place of the usual expiratory ventilator circuit and whether PFC liquid could be recovered when using the chilled condensers at the ventilator exhaust outlet. Methods: Using a model lung, perfluorocarbon vapour loss during humidified partial liquid ventilation of a 3.5 kg infant was approximated. For each test 30 mL of FC-77 was infused into the model lung. Condensers were placed in the expiratory limb of the ventilator circuit and the amounts of PFC (FC-77) and water recovered were measured five times. This was repeated with the condensers placed at the ventilator exhaust outlet. Results: When the condensers were used as the expiratory limb, the mean (± SD) volume of FC77 recovered was 16.4 mL (± 0.18 mL). When the condensers were connected to the ventilator exhaust outlet the mean (± SD) volume of FC-77 recovered was 7.6 mL (± 1.14 mL). The volume of FC-77 recovered was significantly higher when the condenser was used as an expiratory limb. Conclusion: Using two series connected condensers in the ventilator expiratory line 55% of PFC liquid (FC-77) can be recovered during partial liquid ventilation without altering the function of the of the ventilator circuit. This volume of PFC recovered was just over twice that recovered with the condensers connected to the ventilator exhaust outlet. © 2007 Dunster et al; licensee BioMed Central Ltd.
CITATION STYLE
Dunster, K. R., Davies, M. W., & Fraser, J. F. (2007). The use of chilled condensers for the recovery of perfluorocarbon liquid in an experimental model of perfluorocarbon vapour loss during neonatal partial liquid ventilation. BioMedical Engineering Online, 6. https://doi.org/10.1186/1475-925X-6-19
Mendeley helps you to discover research relevant for your work.