Bordetella pertussis and Bordetella parapertussis are the causal agents of whooping cough in humans. They produce diverse virulence factors, including adenylate cyclase-hemolysin (AC-Hly), a secreted toxin of the repeat in toxins (RTX) family with cyclase, pore-forming, and hemolytic activities. Post-translational modifications (PTMs) are essential for the biological activities of the toxin produced by B. pertussis. In this study, we compared AC-Hly toxins from various clinical isolates of B. pertussis and B. parapertussis, focusing on (i) the genomic sequences of cyaA genes, (ii) the PTMs of partially purified AC-Hly, and (iii) the cytotoxic activity of the various AC-Hly toxins. The genes encoding the AC-Hly toxins of B. pertussis and B. parapertussis displayed very limited polymorphism in each species. Most of the sequence differences between the two species were found in the C-terminal part of the protein. Both toxins harbored PTMs, mostly corresponding to palmitoylations of the lysine 860 residue and palmoylations and myristoylations of lysine 983 for B. pertussis and AC-Hly and palmitoylations of lysine 894 and myristoylations of lysine 1017 for B. parapertussis AC-Hly. Purified AC-Hly from B. pertussis was cytotoxic to macrophages, whereas that from B. parapertussis was not.
CITATION STYLE
Bouchez, V., Douché, T., Dazas, M., Delaplane, S., Matondo, M., Chamot-Rooke, J., & Guiso, N. (2017). Characterization of post-translational modifications and cytotoxic properties of the adenylate-cyclase hemolysin produced by various Bordetella pertussis and Bordetella parapertussis isolates. Toxins, 9(10). https://doi.org/10.3390/toxins9100304
Mendeley helps you to discover research relevant for your work.