Electrochemical and photoelectrochemical applications of plasmonic metal and compound nanoparticles

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Metal nanoparticles (NPs) that exhibit bright colors have been used as coloring agents of glass artifacts since before Christ. After the origin of the coloration, localized surface plasmon resonance (LSPR), was elucidated, their application has been expanded widely. This account focuses on electrochemical and photoelectrochemical applications of the plasmonic metal and compound NPs. Because LSPR is based on collective oscillation of free electrons in a NP in resonance with electric field oscillation of light, the resonant wavelength can be tuned electrochemically by transferring electrons to or from the NP. On this basis, we developed a new class of plasmonic sensors without gratings, and near infrared electrochromic smart windows. Meanwhile, resonant NPs exhibit charge separation at the interface with a semiconductor such as TiO2. We studied this phenomenon, plasmon-induced charge separation (PICS), in particular about mechanisms including behavior of energetic carriers (hot holes and electrons), by using a wide variety of plasmonic NPs with different morphologies and compositions. Knowledge thus obtained was exploited for nanofabrication and development of near infrared PICS devices.

Cite

CITATION STYLE

APA

Nishi, H., & Tatsuma, T. (2019). Electrochemical and photoelectrochemical applications of plasmonic metal and compound nanoparticles. Electrochemistry, 87(6), 321–327. https://doi.org/10.5796/electrochemistry.19-6-E2679

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free