The dark side of energy transport along excitonic wires: On-site energy barriers facilitate efficient, vibrationally mediated transport through optically dark subspaces

11Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We present a novel, counter-intuitive method, based on dark-state protection, for significantly improving exciton transport efficiency through "wires"comprising a chain of molecular sites with an intrinsic energy gradient. Specifically, by introducing "barriers"to the energy landscape at regular intervals along the transport path, we find that undesirable radiative recombination processes are suppressed due to a clear separation of sub-radiant and super-radiant eigenstates in the system. This, in turn, can lead to an improvement in transmitted power by many orders of magnitude, even for very long chains. From there, we analyze the robustness of this phenomenon to changes in both system and environment properties to show that this effect can be beneficial over a range of different thermal and optical environment regimes. Finally, we show that the novel energy landscape presented here may provide a useful foundation for overcoming the short length scales over which exciton diffusion typically occurs in organic photo-voltaics and other nanoscale transport scenarios, thus leading to considerable potential improvements in the efficiency of such devices.

Cite

CITATION STYLE

APA

Davidson, S., Fruchtman, A., Pollock, F. A., & Gauger, E. M. (2020). The dark side of energy transport along excitonic wires: On-site energy barriers facilitate efficient, vibrationally mediated transport through optically dark subspaces. Journal of Chemical Physics, 153(13). https://doi.org/10.1063/5.0023702

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free