Abstract
Introduction:In human eyes, ocular enlargement/growth reflects active extracellular matrix remodeling of the outer scleral shell. Micro-RNAs are small non-coding RNAs that regulate gene expression by base pairing with target sequences. They serve as nodes of signaling networks. We hypothesized that the sclera, like most tissues, expresses micro-RNAs, some of which modulate genes regulating ocular growth. In this study, the scleral micro-RNA expression profile of rapidly growing human fetal eyes was compared with that of stable adult donor eyes using high-throughput microarray and quantitative PCR analyses.Methods:Scleral samples from normal human fetal (24 wk) and normal adult donor eyes were obtained (n=4 to 6, each group), and RNA extracted. Genome-wide micro-RNA profiling was performed using the Agilent micro-RNA microarray platform. Micro-RNA target predictions were obtained using Microcosm, TargetScan and PicTar algorithms. TaqMan® micro-RNA assays targeting micro-RNAs showing either highest significance, detection, or fold differences, and collagen specificity, were applied to scleral samples from posterior and peripheral ocular regions (n=7, each group). Microarray data were analyzed using R, and quantitative PCR data with 2^-deltaCt methods.Results:Human sclera was found to express micro-RNAs, and comparison of microarray results for adult and fetal samples revealed many to be differentially expressed (p<0.01, min p= 6.5x1011). Specifically, fetal sclera showed increased expression of mir-214, let-7c, let-7e, mir-103, mir-107, and mir-98 (1.5 to 4 fold changes, p<0.01). However, no significant regionally specific differences. i.e., posterior vs. peripheral sclera, were observed for either adult or fetal samples.Conclusion:For the first time, micro-RNA expression has been catalogued in human sclera. Some micro-RNAs show age-related differential regulation, higher in the sclera of rapidly growing fetal eyes, consistent with a role in ocular growth regulation. Thus micro-RNAs represent potential targets for ocular growth manipulation, related to myopia and/or other disorders such as scleral ectasia. © 2013 Metlapally et al.
Cite
CITATION STYLE
Metlapally, R., Gonzalez, P., Hawthorne, F. A., Tran-Viet, K. N., Wildsoet, C. F., & Young, T. L. (2013). Scleral Micro-RNA Signatures in Adult and Fetal Eyes. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0078984
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.