Using Brownian Dynamics simulations, we study effective interactions mediated between two identical and impermeable disks (inclusions) immersed in a bath of identical, active (self-propelled), Brownian rods in two spatial dimensions, by assuming that the self-propulsion axis of the rods may generally deviate from their longitudinal axis. When the self-propulsion is transverse (perpendicular to the rod axis), the accumulation of active rods around the inclusions is significantly enhanced, causing a more expansive steric layering (ring formation) of the rods around the inclusions, as compared with the reference case of longitudinally self-propelling rods. As a result, the transversally self-propelling rods also mediate a significantly longer ranged effective interaction between the inclusions. The bath-mediated interaction arises due to the overlaps between the active-rod rings formed around the inclusions, as they are brought into small separations. When the self-propulsion axis is tilted relative to the rod axis, we find an asymmetric imbalance of active-rod accumulation around the inclusion dimer. This leads to a noncentral interaction, featuring an anti-parallel pair of transverse force components and, hence, a bath-mediated torque on the dimer.
CITATION STYLE
Sebtosheikh, M., & Naji, A. (2021). Noncentral forces mediated between two inclusions in a bath of active Brownian rods. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-02295-y
Mendeley helps you to discover research relevant for your work.