Ground-based network of cloud measurements is presently limited and there exists uncertainty in the cloud microphysical parameters derived from ground-based measurements. Bias in the i-skyradiometer derived cloud optical depth (τ c) and droplet effective radius (R eff) and the importance of these parameters in the parameterization of clouds in climate models have made us intend to develop a possible method for improving these parameters. A new combination method, which uses zenith sky transmittance and surface radiation measurements, has been proposed in the present study to improve the retrievals. The i-skyradiometer derived parameters τ c and R eff have been provided as a first guess to a radiative transfer model (SBDART) and a new retrieval algorithm has been implemented to obtain the best combination of τ c and R eff having minimum bias (-0.09 and -2.5) between the simulated global and diffuse fluxes at the surface with the collocated surface radiation measurements. The new retrieval method has improved τ c and R eff values compared to those derived using the transmittance only method and are in good agreement with the MODIS satellite retrievals. The study therefore suggests a possible improvement of the i-skyradiometer derived cloud parameters using observed radiation fluxes and a radiative transfer model. © 2014 S. Dipu et al.
CITATION STYLE
Dipu, S., Pandithurai, G., Panicker, A. S., Takamura, T., Lee, D. I., & Kim, D. (2014). Assessment and validation of i-skyradiometer retrievals using broadband flux and MODIS data. Advances in Meteorology, 2014. https://doi.org/10.1155/2014/849279
Mendeley helps you to discover research relevant for your work.