Data-Driven Elucidation of Flavor Chemistry

49Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Flavor molecules are commonly used in the food industry to enhance product quality and consumer experiences but are associated with potential human health risks, highlighting the need for safer alternatives. To address these health-associated challenges and promote reasonable application, several databases for flavor molecules have been constructed. However, no existing studies have comprehensively summarized these data resources according to quality, focused fields, and potential gaps. Here, we systematically summarized 25 flavor molecule databases published within the last 20 years and revealed that data inaccessibility, untimely updates, and nonstandard flavor descriptions are the main limitations of current studies. We examined the development of computational approaches (e.g., machine learning and molecular simulation) for the identification of novel flavor molecules and discussed their major challenges regarding throughput, model interpretability, and the lack of gold-standard data sets for equitable model evaluation. Additionally, we discussed future strategies for the mining and designing of novel flavor molecules based on multi-omics and artificial intelligence to provide a new foundation for flavor science research.

Cite

CITATION STYLE

APA

Kou, X., Shi, P., Gao, C., Ma, P., Xing, H., Ke, Q., & Zhang, D. (2023, May 10). Data-Driven Elucidation of Flavor Chemistry. Journal of Agricultural and Food Chemistry. American Chemical Society. https://doi.org/10.1021/acs.jafc.3c00909

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free