Enabling Informed Decision Making in the Absence of Detailed Nutrition Labels: A Model to Estimate the Added Sugar Content of Foods

0Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

Obesity and diabetes have emerged as an increasing threat to public health, and the consumption of added sugar can contribute to their development. Though nutritional content information can positively influence consumption behavior, added sugar is not currently required to be disclosed in all countries. However, a growing proportion of the world’s population has access to mobile devices, which allow for the development of digital solutions to support health-related decisions and behaviors. To test whether advances in computational science can be leveraged to develop an accurate and scalable model to estimate the added sugar content of foods based on their nutrient profile, we collected comprehensive nutritional information, including information on added sugar content, for 69,769 foods. Eighty percent of this data was used to train a gradient boosted tree model to estimate added sugar content, while 20% of it was held out to assess the predictive accuracy of the model. The performance of the resulting model showed 93.25% explained variance per default portion size (84.32% per 100 kcal). The mean absolute error of the estimate was 0.84 g per default portion size (0.81 g per 100 kcal). This model can therefore be used to deliver accurate estimates of added sugar through digital devices in countries where the information is not disclosed on packaged foods, thus enabling consumers to be aware of the added sugar content of a wide variety of foods.

Cite

CITATION STYLE

APA

Daniel-Weiner, R., Cardel, M. I., Skarlinski, M., Goscilo, A., Anderson, C., & Foster, G. D. (2023). Enabling Informed Decision Making in the Absence of Detailed Nutrition Labels: A Model to Estimate the Added Sugar Content of Foods. Nutrients, 15(4). https://doi.org/10.3390/nu15040803

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free