Molecular Dynamics Simulations on the Elastic Properties of Polypropylene Bionanocomposite Reinforced with Cellulose Nanofibrils

6Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Cellulose-reinforced polypropylene bionanocomposites can show improved elastic properties over their pure polypropylene counterparts. We have used equilibrium and non-equilibrium molecular dynamics (MD) simulations to study the elastic properties of polypropylene bionanocomposite systems composed of cellulose nanofibrils (CNF), polypropylene (PP) matrix, and maleic anhydride (MAH) coupling agent. The components of the bionanocomposite were parametrized for compatibility with the AMBER14SB force fields. The elastic properties of pure PP systems converge for the chains with at least 20 monomers. The ratio of cellulose in CNF-PP bionanocomposites strongly affects their elastic properties. The elastic modulus of CNF-PP bionanocomposites shows small improvement when the adhesion between hydrophobic and hydrophilic components is facilitated by a MAH coupling agent. The results demonstrate how fully-atomistic MD simulations can be systematically used to evaluate the elastic properties of CNF-PP bionanocomposites and to make predictions that are in agreement with experiments.

Cite

CITATION STYLE

APA

Modi, V., & Karttunen, A. J. (2022). Molecular Dynamics Simulations on the Elastic Properties of Polypropylene Bionanocomposite Reinforced with Cellulose Nanofibrils. Nanomaterials, 12(19). https://doi.org/10.3390/nano12193379

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free