Pattern recognition and clustering of transient pressure signals for burst location

12Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

Abstract

A large volume of the water produced for public supply is lost in the systems between sources and consumers. An important-in many cases the greatest-fraction of these losses are physical losses, mainly related to leaks and bursts in pipes and in consumer connections. Fast detection and location of bursts plays an important role in the design of operation strategies for water loss control, since this helps reduce the volume lost from the instant the event occurs until its effective repair (run time). The transient pressure signals caused by bursts contain important information about their location and magnitude, and stamp on any of these events a specific "hydraulic signature". The present work proposes and evaluates three methods to disaggregate transient signals, which are used afterwards to train artificial neural networks (ANNs) to identify burst locations and calculate the leaked flow. In addition, a clustering process is also used to group similar signals, and then train specific ANNs for each group, thus improving both the computational efficiency and the location accuracy. The proposed methods are applied to two real distribution networks, and the results show good accuracy in burst location and characterization.

Cite

CITATION STYLE

APA

Manzi, D., Brentan, B., Meirelles, G., Izquierdo, J., & Luvizotto, E. (2019). Pattern recognition and clustering of transient pressure signals for burst location. Water (Switzerland), 11(11). https://doi.org/10.3390/w11112279

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free