Multi-dimensional analyses have been expected recently with expanding computation resources for gas-liquid two- phase flow analyses of advanced nuclear systems such as passive safety systems and natural-circulation-type reactors. However, the applicability of previous constitutive equations for multi-dimensional analyses has not been fully investigated especially for the effects of flow path scale because the equations have been assessed for small-scale experiments. In this study, we analyzed the scale effects by the multi-dimensional two-fluid model code using data in 38 mm and 200 mm diameter pipes. We clarified a key-parameter to model the scale effects and developed models for the effects on phase distribution. The scale effects can be classified by the relative relationship between bubble diameter db and turbulent length scale lT. Bubble-induced turbulence is increased under that db is smaller than lT and bubble coalescence is predominated rather than breakup under that lT is about three times larger than db and under higher void fraction. Based on these findings, we established new models for bubble turbulent diffusion and bubble diameter. The applicability was promising through assessments against the 38 mm and 200 mm pipes under different flow rates and against databases for 60 mm, 100 mm and 480 mm pipes. © 2001 Taylor and Francis Group, Ltd.
CITATION STYLE
Ohnuki, A., & Akimoto, H. (2001). Model development for bubble turbulent diffusion and bubble diameter in large vertical pipes. Journal of Nuclear Science and Technology, 38(12), 1074–1080. https://doi.org/10.1080/18811248.2001.9715138
Mendeley helps you to discover research relevant for your work.