The Effects of Temperature Management on Brain Microcirculation, Oxygenation and Metabolism

5Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Purpose: Target temperature management (TTM) is often used in patients after cardiac arrest, but the effects of cooling on cerebral microcirculation, oxygenation and metabolism are poorly understood. We studied the time course of these variables in a healthy swine model.Methods: Fifteen invasively monitored, mechanically ventilated pigs were allocated to sham procedure (normothermia, NT; n = 5), cooling (hypothermia, HT, n = 5) or cooling with controlled oxygenation (HT-Oxy, n = 5). Cooling was induced by cold intravenous saline infusion, ice packs and nasal cooling to achieve a body temperature of 33–35 °C. After 6 h, animals were rewarmed to baseline temperature (within 5 h). The cerebral microvascular network was evaluated (at baseline and 2, 7 and 12 h thereafter) using sidestream dark-field (SDF) video-microscopy. Cerebral blood flow (laser Doppler MNP100XP, Oxyflow, Oxford Optronix, Oxford, UK), oxygenation (PbtO2, Licox catheter, Integra Lifesciences, USA) and lactate/pyruvate ratio (LPR) using brain microdialysis (CMA, Stockholm, Sweden) were measured hourly. Results: In HT animals, cerebral functional capillary density (FCD) and proportion of small-perfused vessels (PSPV) significantly decreased over time during the cooling phase; concomitantly, PbtO2 increased and LPR decreased. After rewarming, all microcirculatory variables returned to normal values, except LPR, which increased during the rewarming phase in the two groups subjected to HT when compared to the group maintained at normothermia. Conclusions: In healthy animals, TTM can be associated with alterations in cerebral microcirculation during cooling and altered metabolism at rewarming.

Cite

CITATION STYLE

APA

Donadello, K., Su, F., Annoni, F., Scolletta, S., He, X., Peluso, L., … Taccone, F. S. (2022). The Effects of Temperature Management on Brain Microcirculation, Oxygenation and Metabolism. Brain Sciences, 12(10). https://doi.org/10.3390/brainsci12101422

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free