Microdosimetry for hadron therapy: A state of the art of detection technology

5Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

The interest in hadron therapy is growing fast thanks to the latest technological advances in accelerators and delivery technologies, to the development of more and more efficient and comprehensive treatment planning tools, and due to its increasing clinical adoption proving its efficacy. A precise and reliable beam quality assessment and an accurate and effective inclusion of the biological effectiveness of different radiation qualities are fundamental to exploit at best its advantages with respect to conventional radiotherapy. Currently, in clinical practice, the quality assurance (QA) is carried out by means of conventional dosimetry, while the biological effectiveness of the radiation is taken into account considering the Relative Biological Effectiveness (RBE). The RBE is considered a constant value for protons and it is estimated as a function of the absorbed dose in case of carbon ions. In this framework, microdosimetry could bring a significant improvement to both QA and RBE estimation. By measuring the energy deposited by the radiation into cellular or sub-cellular volumes, microdosimetry could provide a unique characterisation of the beam quality on one hand, and a direct link to radiobiology on the other. Different detectors have been developed for microdosimetry, from the more conventional tissue equivalent proportional counter (TEPC), silicon-based and diamond-based solid-state detectors, to ΔE-E telescope detectors, gas electrons multiplier (GEM), hybrid microdosimeters and a micro-bolometer based on Superconducting QUantum Interference Device (SQUID) technology. However, because of their different advantages and drawbacks, a standard device and an accredited experimental methodology have not been unequivocally identified yet. The establishment of accepted microdosimetry standard protocols and code of practice is needed before the technique could be employed in clinical practice. Hoping to help creating a solid ground on which future research, development and collaborations could be planned and inspired, a comprehensive state of the art of the detector technologies developed for microdosimetry is presented in this review, discussing their use in clinical hadron therapy conditions and considering their advantages and drawbacks.

Cite

CITATION STYLE

APA

Parisi, G., Romano, F., & Schettino, G. (2022, November 24). Microdosimetry for hadron therapy: A state of the art of detection technology. Frontiers in Physics. Frontiers Media SA. https://doi.org/10.3389/fphy.2022.1035956

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free