Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles

52Citations
Citations of this article
140Readers
Mendeley users who have this article in their library.

Abstract

During long-distance migrations, animals navigate using a variety of sensory cues, mechanisms and strategies. Although guidance mechanisms are usually studied under controlled laboratory conditions, such methods seldom allow for navigation behavior to be examined in an environmental context. Similarly, although realistic environmental models are often used to investigate the ecological implications of animal movement, explicit consideration of navigation mechanismsinsuch modelsisrare. Here, weusedaninterdisciplinary approach in which we first conducted lab-based experiments to determine how hatchling loggerhead sea turtles (Caretta caretta) respond to magnetic fields that exist at five widely separated locations along their migratory route, and then studied the consequences of the observed behavior by simulating it within an ocean circulation model. Magnetic fields associated with two geographic regions that pose risks to young turtles (due to cold wintertime temperatures or potential displacement from the migratory route) elicited oriented swimming, whereas fields from three locations where surface currents and temperature pose no such risk did not. Additionally, at locations with fields that elicited oriented swimming, simulations indicate that the observed behavior greatly increases the likelihood of turtles advancing along the migratory pathway. Our findings suggest that the magnetic navigation behaviorof sea turtles is intimately tied totheir oceanic ecology and isshapedbyacomplex interplay between ocean circulation and geomagnetic dynamics.

Cite

CITATION STYLE

APA

Putman, N. F., Verley, P., Endres, C. S., & Lohmann, K. J. (2015). Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles. Journal of Experimental Biology, 218(7), 1044–1050. https://doi.org/10.1242/jeb.109975

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free