Fire-retardancy of wood coated by titania nanoparticles

12Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Of late, the number of fire cases in Malaysia has been steadily increasing at a very alarming rate. One way to reduce the ability of fire ignition or spreading is by coating or doping the wood with a layer of fire-protected coating, or an insulating barrier, which is also known as Flame Retardant Coatings (FRCs). In this study, titania (TiO2) is coated onto the surface of the wood to act as an FRC. The synthesis of TiO2 was carried out by using the sol-gel method, while the coating process was done by the dip-coating method. FESEM images show that the surface of the wood has been fully covered by titania nanoparticles (TiO2 NPs) in size range of 24 - 45 nm. From the TGA results, it was shown that the thermal stability of the wood has increased from 300 to 320 °C, with just by a merely coated layer of TiO2 NPs. Flammability testing was carried out by a flame burner also shows that the coated wood is capable of reducing the flammability of the wood, where the coated wood required a longer time to be burned out. The flame spread test indicated that the coated samples managed to reduce the spreading of the flame, as compared to the uncoated sample. These initial results show the potential of the TiO2 NPs as a good flame-retardant material.

Cite

CITATION STYLE

APA

Deraman, A. F., & Chandren, S. (2019). Fire-retardancy of wood coated by titania nanoparticles. In AIP Conference Proceedings (Vol. 2155). American Institute of Physics Inc. https://doi.org/10.1063/1.5125526

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free