In this work, we estimate the deterioration of NLP processing given an estimate of the amount and nature of grammatical errors in a text. From a corpus of essays written by English-language learners, we extract ungrammatical sentences, controlling the number and types of errors in each sentence. We focus on six categories of errors that are commonly made by English-language learners, and consider sentences containing one or more of these errors. To evaluate the effect of grammatical errors, we measure the deterioration of ungrammatical dependency parses using the labeled F-score, an adaptation of the labeled attachment score. We find notable differences between the influence of individual error types on the dependency parse, as well as interactions between multiple errors.
CITATION STYLE
Napoles, C., Cahill, A., & Madnani, N. (2016). The effect of multiple grammatical errors on processing non-native writing. In Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications, BEA 2016 at the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2016 (pp. 1–11). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/w16-0501
Mendeley helps you to discover research relevant for your work.