Data analysis on sea water quality data in Jakarta Bay using Principal Components Analysis (PCA) method during transitional monsoon 2012

2Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To get a conclusion from a data matrix consisting of 3 individuals and 2 variables is relatively easy. However, it is very difficult to understand the large amount of data. Therefore, it requires data analysis methods for an easier representation. Based on sea water quality data in Jakarta Bay from BPLHD DKI Jakarta (Jakarta Environmental Management Board), there are 24 biological, physical, and chemical parameters in 23 stations. Based on the quality and quantitative of data, we use only one set data on October 2012 as representative of the Second Transition monsoon. Analysing was conducted for 10 parameters namely turbidity, total suspended solid (TSS), temperature, pH, salinity, dissolved oxygen (DO), biological oxygen demand (BOD), methylene blue active substances, phenol, and zinc (Zn) at 23 stations. Consequently, in this paper, we get a conclusion from the data using principal component analysis (PCA) method for its application in data analysis. The method of PCA is used to analyse the data matrix from a similarity point of view between stations and correlation between parameters. The result of PCA is four principal components i.e. PC 1 (27.73% of the variance) is mainly related to TSS, temperature, salinity, and DO. PC 2 (16.33% of the variance) is mainly related to BOD. PC 3 (12.39% of variance) is mainly related to MBAS, phenol, and zinc. PC 4 explains 11.09% of variances related mainly to turbidity.

Cite

CITATION STYLE

APA

Martina, A., & Radjawane, I. M. (2019). Data analysis on sea water quality data in Jakarta Bay using Principal Components Analysis (PCA) method during transitional monsoon 2012. In IOP Conference Series: Earth and Environmental Science (Vol. 339). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/339/1/012023

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free