Quasi-optimal elimination trees for 2D grids with singularities

22Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We construct quasi-optimal elimination trees for 2D finite element meshes with singularities.These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal.We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination trees that has cost O(log(Ne log(Ne)), where N e is the number of elements in the mesh.We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments.

Cite

CITATION STYLE

APA

Paszynska, A., Paszynski, M., Jopek, K., Wofniak, M., Goik, D., Gurgul, P., … Pingali, K. (2015). Quasi-optimal elimination trees for 2D grids with singularities. Scientific Programming, 2015. https://doi.org/10.1155/2015/303024

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free