Aspect-Based Sentiment Analysis (ABSA) is a Natural Language Processing (NLP) task that extracts referred aspects from text and assigns polarities to opinions about those aspects. Most research on ABSA focuses on English. Only a few ABSA works deal with the Portuguese language. In this work, we used BERTimbau to create a Question-Answer approach to ABSA in Portuguese. First, we post-trained this model with text from the same domain as our target corpus. Then, we constructed an auxiliary sentence from the aspect and converted ABSA to a sentence-pair classification task, such as question answering (QA) and natural language inference (NLI). Our experiments show that ABSA based on BERT for Portuguese achieved Balanced Accuracy (BACC) of 77% on a corpus of reviews about the accommodation sector using a post-trained model with a QA approach.
CITATION STYLE
Lopes, E., Freitas, L., Gomes, G., Lemos, G., Hammes, L., & Corrêa, U. (2022). Exploring BERT for Aspect-based Sentiment Analysis in Portuguese Language. In Proceedings of the International Florida Artificial Intelligence Research Society Conference, FLAIRS (Vol. 35). Florida Online Journals, University of Florida. https://doi.org/10.32473/flairs.v35i.130601
Mendeley helps you to discover research relevant for your work.