New pressure and temperature effects on bacterial spores

2Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122°C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80°C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa with 37°C, and then dual stained with the fluorescent dyes SYTO 16 and propidium iodide. For pressure treated spores four distinct populations were detected by flow cytometry, and for these we suggest a three step model of inactivation involving a germination step following hydrolysis of the spore cortex, an unknown step, and finally an inactivation step with physical compromise of the spore inner membrane. An understanding of these effects and mechanisms will aid the safety assessment of pressure assisted thermal sterilisation, in turn facilitating the adoption by industry and commercialisation of such processes. © 2008 IOP Publishing Ltd.

Cite

CITATION STYLE

APA

Mathys, A., Heinz, V., & Knorr, D. (2008). New pressure and temperature effects on bacterial spores. In Journal of Physics: Conference Series (Vol. 121). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/121/14/142002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free