Confinement of Therapeutic Enzymes in Selectively Permeable Polymer Vesicles by Polymerization-Induced Self-Assembly (PISA) Reduces Antibody Binding and Proteolytic Susceptibility

198Citations
Citations of this article
160Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Covalent PEGylation of biologics has been widely employed to reduce immunogenicity, while improving stability and half-life in vivo. This approach requires covalent protein modification, creating a new entity. An alternative approach is stabilization by encapsulation into polymersomes; however this typically requires multiple steps, and the segregation requires the vesicles to be permeable to retain function. Herein, we demonstrate the one-pot synthesis of therapeutic enzyme-loaded vesicles with size-selective permeability using polymerization-induced self-assembly (PISA) enabling the encapsulated enzyme to function from within a confined domain. This strategy increased the proteolytic stability and reduced antibody recognition compared to the free protein or a PEGylated conjugate, thereby reducing potential dose frequency and the risk of immune response. Finally, the efficacy of encapsulated l-asparaginase (clinically used for leukemia treatment) against a cancer line was demonstrated, and its biodistribution and circulation behavior in vivo was compared to the free enzyme, highlighting this methodology as an attractive alternative to the covalent PEGylation of enzymes.

Cite

CITATION STYLE

APA

Blackman, L. D., Varlas, S., Arno, M. C., Houston, Z. H., Fletcher, N. L., Thurecht, K. J., … O’Reilly, R. K. (2018). Confinement of Therapeutic Enzymes in Selectively Permeable Polymer Vesicles by Polymerization-Induced Self-Assembly (PISA) Reduces Antibody Binding and Proteolytic Susceptibility. ACS Central Science, 4(6), 718–723. https://doi.org/10.1021/acscentsci.8b00168

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free