The conventional method for machining metal matrix composites (MMCs) is difficult on account of their excellent characteristics compared with those of their source materials. Modern laser machining technology is a suitable noncontact method for machining operations of advanced engineering materials due to its novel advantages such as higher productivity, ease of adaptation to automation, minimum heat affected zone (HAZ), green manufacturing, decreased processing costs, improved quality, reduced wastage, removal of finishing operations, and so on. Their application includes hole drilling in an aircraft engine components such as combustion chambers, nozzle guide vanes, and turbine blades made up of MMCs which meet quality standards that determine their suitability for service use. This paper presents a derived mathematical model based on evolutionary computation methods using multivariate regression fitting for the prediction of multiple characteristics (circularity, taper, spatter, and HAZ) of neodymium: yttrium aluminum garnet laser drilling of aluminum matrix/silicon carbide particulate (Al/SiCp) MMCs using genetic programming. Laser drilling input factors such as laser power, pulse frequency, gas pressure, and pulse width are utilized. From a training dataset, different genetic models for multiple quality characteristics were obtained with great accuracy during simulated evolution to provide a more accurate prediction compared to empirical correlations.
CITATION STYLE
Yunus, M., & Alsoufi, M. S. (2019). Mathematical Modeling of Multiple Quality Characteristics of a Laser Microdrilling Process Used in Al7075/SiCp Metal Matrix Composite Using Genetic Programming. Modelling and Simulation in Engineering, 2019. https://doi.org/10.1155/2019/1024365
Mendeley helps you to discover research relevant for your work.