Laboratory measurements of the frictional properties of the Zuccale low-angle normal fault, Elba Island, Italy

75Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Using a case study from the island of Elba, Italy, we seek to test the hypothesis that the presence of minerals with low frictional strengths can explain prolonged slip on low-angle normal faults. The central core of the Zuccale low-angle normal fault contains a distinctive fault rock zonation that developed during progressive exhumation. Most fault rock components preserve microstructural evidence for having accommodated deformation entirely, or partly, by frictional mechanisms. One millimeter thick sample powders of all the major fault rock components were deformed in a triaxial deformation apparatus under water-saturated conditions, at room temperature, and at constant effective normal stresses of 25, 50, and 75 MPa. Pore fluid pressure was maintained at 50 MPa throughout. Overall, the coefficient of friction (μ) of the fault rocks varies between 0.25 and 0.8, emphasizing the marked strength heterogeneity that may exist within natural fault zones. Also, μ is strongly dependent on fault rock mineralogy and is <0.45 for fault rocks containing talc, chlorite, and kaolinite and >0.6 for fault rocks dominated by quartz, dolomite, calcite, and amphibole. Localization of frictional slip within talc-rich portions of the fault core can potentially explain movements along the Zuccale fault over a wide range of depths within the upper crust, although the mechanical importance of the talc-bearing fault rocks likely decreased following their dismemberment into a series of poorly connected fault rock lenses. Additionally, slip within clay-bearing fault gouges with μ between 0.4 and 0.5 may have facilitated movements in the uppermost (<2 km) crust. For several other fault rock components, μ varies between 0.5 and 0.8, and mineralogical weakening alone is insufficient to account for low-angle slip. In the latter fault rock components, other weakening mechanisms such as the development of high fluid pressures, or dissolution-precipitation creep, may have been particularly important in reducing fault strength. Copyright 2010 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Smith, S. A. F., & Faulkner, D. R. (2010). Laboratory measurements of the frictional properties of the Zuccale low-angle normal fault, Elba Island, Italy. Journal of Geophysical Research: Solid Earth, 115(2). https://doi.org/10.1029/2008JB006274

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free