The combination of cross-linking/mass spectrometry (XL-MS) and ion mobility is still underexplored for conducting protein conformational and protein-protein interaction studies. We present a method for analyzing cross-linking mixtures on a timsTOF Pro mass spectrometer that allows separating ions based on their gas-phase mobilities. Cross-linking was performed with three urea-based MS-cleavable cross-linkers that deliver distinct fragmentation patterns for cross-linked species upon collisional activation. The discrimination of cross-linked species from non-cross-linked peptides was readily performed based on their collisional cross sections. We demonstrate the general feasibility of our combined XL-MS/ion mobility approach for three protein systems of increasing complexity: (i) bovine serum albumin (BSA), (ii) Escherichia coli ribosome, and (iii) HEK293T cell nuclear lysates. We identified a total of 623 unique cross-linking sites for BSA, 670 for the E. coli ribosome, and 1623 unique cross-links for nuclear lysates, corresponding to 1088 intra- and 535 interprotein interactions and yielding 564 distinct protein-protein interactions. Our results underline the strength of combining XL-MS with ion mobility not only for deriving three-dimensional (3D) structures of single proteins but also for performing system-wide protein interaction studies.
CITATION STYLE
Ihling, C. H., Piersimoni, L., Kipping, M., & Sinz, A. (2021). Cross-Linking/Mass Spectrometry Combined with Ion Mobility on a timsTOF Pro Instrument for Structural Proteomics. Analytical Chemistry, 93(33), 11442–11450. https://doi.org/10.1021/acs.analchem.1c01317
Mendeley helps you to discover research relevant for your work.