Scattering properties of acoustic beams off spinning objects: Induced radiation force and torque

1Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Understanding the acoustic scattering and radiation force and torque of an object is important in various fields, such as underwater communication, acoustic imaging, and noninvasive characterization, as well as biomedical ultrasound. Generally, acoustic scattering is considered for static (non-moving) objects and the impinging signal is typically a plane wave. Here, we consider scattering off cylindrical objects in spinning motion around the axis of rotational symmetry. We investigate the radiation force and torque induced by various incident signals, e.g., cylindrical diverging and converging beams as well as quasi-Gaussian beams of different orders. It is assumed in this study (unless otherwise stated) that the acoustic parameters of the objects (density and compressibility) are identical to those of the surrounding medium, in order to isolate the effects purely attributed to rotation. The scenario of a spinning inhomogeneous object is also shown to play a prominent role for generating torque with single plane waves. Our findings may add to the current interest in time-varying and moving metamaterials and open vistas in manipulation of movement and position of ultra-small objects via acoustic beams.

Cite

CITATION STYLE

APA

Farhat, M., Guenneau, S., Chen, P. Y., & Wu, Y. (2022). Scattering properties of acoustic beams off spinning objects: Induced radiation force and torque. Applied Physics Letters, 121(14). https://doi.org/10.1063/5.0097041

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free